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This work studies the motion of an expanding or contracting bubble pinned at a
submerged tube tip and covered with an insoluble Volmer surfactant. The motion
is driven by constant flow rate Q into or out of the tube tip. The purpose is to
examine two central assumptions commonly made in the bubble and drop methods
for measuring dynamic surface tension, those of uniform surfactant concentration and
of purely radial flow. Asymptotic solutions are obtained in the limit of the capillary
number Ca → 0 with the Reynolds number Re = o(Ca−1), non-zero Gibbs elasticity
(G), and arbitrary Bond number (Bo). (Ca = µQ/a2σc, where µ is the liquid viscosity,
a is the tube radius, and σc is the clean surface tension.) This limit is relevant to
dynamic-tension experiments, and gives M →∞, where M = G/Ca is the Marangoni
number. We find that in this limit the deforming bubble at each instant in time takes
the static shape. The surfactant distribution is uniform, but its value varies with
time as the bubble area changes. To maintain a uniform distribution at all times, a
tangential flow is induced, the magnitude of which is more than twice that in the
clean case. This is in contrast to the surface-immobilizing effect of surfactant on an
isolated translating bubble. These conclusions are confirmed by a boundary integral
solution of Stokes flow valid for arbitrary Ca , G and Bo. The uniformity in surfactant
distribution validates the first assumption in the bubble and drop methods, but the
enhanced tangential flow contradicts the second.

1. Introduction
Surfactant adsorption or desorption at an interface is usually studied by expanding

or contracting the interfacial area and measuring the change in surface tension as
a surfactant adsorbs onto or desorbs from the perturbed surface. An equation of
state relates the tension to the surface surfactant concentration. Comparison with
the predictions of transport models determines the kinetic rate constants and bulk
diffusion coefficients (see the review by Chang & Franses 1995). Among the most
useful methods for arranging the surfactant exchange are the expansion or contraction
of bubbles or drops attached to a tube tip and with an adsorbed monolayer on their
surfaces. The bubble or drop motion is slow so that the viscous and inertial forces
exerted on the interface by the induced flow are much smaller than the surface tension
forces. Thus, the capillary number Ca � 1, and the Weber number We = Ca Re � 1,
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where Re is the Reynolds number. (Ca = µQ/a2σc and Re = ρQ/aµ, where a is the
tube radius, σc is the clean surface tension, Q is the characteristic volume flow rate
into or out of the tube tip, and µ and ρ are, respectively, the viscosity and density
of the liquid.) For Ca � 1 and Ca Re � 1, the bubble or drop shape is governed
by a static balance between the surface tension and gravitational forces, i.e. by the
Young–Laplace equation.

In this paper, we study the fluid mechanics of a model system in which a pendant
bubble, submerged in a liquid and attached to a tube tip, expands or contracts with
an adsorbed, insoluble Volmer surfactant (Gaines 1966; Aveyard & Haydon 1973)
on its surface for Ca � 1 and Ca Re � 1. Our purpose is to use the model results
to examine the validity of two central assumptions commonly made in the bubble
or drop techniques for measuring dynamic surface tension. We begin with a brief
description of the bubble and drop techniques (§ 1.1), which sets the background for
the elucidation in § 1.2 of the central assumptions we will examine.

1.1. Bubble or drop dynamic-surface-tension measurement techniques

These techniques measure the tension from the Young–Laplace equation either by
analysing the interfacial shape (the pendant bubble or drop shape analysis method),
determining the bubble or drop pressure (growing drop, maximum bubble pressure,
and pulsating bubble methods), or measuring the weight of detached drops (drop
weight method).

The shape analysis method employs large bubbles or drops so that gravity elongates
the shape into a pendant form rather than a section of a sphere (see, for example,
Miller, Joos & Fainerman 1994; Faour et al. 1996; Song & Springer 1996; der Rio &
Neumann 1997). In practice, this means that the Bond number must be larger than
0.05 (Bo = ρga2/σc, where g is the acceleration due to gravity). A bubble or drop
is first formed at the tip of a tube with the tip either facing up (bubble) or down
(drop). After formation, surfactant molecules in the solution begin to adsorb onto
the interface until the surface concentration reaches equilibrium. The interface is then
contracted or expanded by changing the volume of the bubble or drop, causing the
surfactant to exchange between the liquid and the interface. A video camera captures
a silhouette of the bubble or drop, and the edge location is discretized and stored.
Matching the instantaneous shapes to solutions of the Young–Laplace equation yields
the tension as a function of time.

The growing drop method forms a hemispherical drop of surfactant solution in
air at a tube tip, and then expands it (Passerone et al. 1991; Macleod & Radke
1993; Nagarajan & Wasan 1993; Zhang, Harris & Basaran 1994; Liggieri, Ravera &
Passerone 1995). Surfactant molecules diffuse towards and adsorb onto the expanding
drop surface. The tube diameter is small so that the drop grows as a section of a sphere.
The drop pressure P (t) (relative to the atmospheric pressure) is measured and the
radius of the drop R(t) is calculated from the measured liquid flow rate. The tension
follows from the simplified form of the Young–Laplace equation: σ(t) = 1

2
R(t)P (t),

as dictated by the spherical geometry. The maximum bubble pressure method grows
bubbles continuously from a tube tip, and records the maximum pressure when the
bubble is hemispherical (see, for example, Miller et al. 1994; Hallowell & Hirt 1994).
The spherical form of the Young–Laplace equation again yields the tension at the
time of maximum pressure. This is the tension when the bubble is hemispherical,
which occurs at a particular surface age, with the age of a freshly created bubble
taken as zero. At a higher gas flow rate, a bubble takes less time to grow to be
hemispherical, and the surface is less aged at the moment of maximum pressure.
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Thus, by using different gas flow rates, the surface tension is determined for different
surface ages. The pulsating bubble technique oscillates the area of a pinned bubble
that is small enough to be a section of a sphere and continuously measures the
pressure in the bubble and the radius of curvature (Chang & Franses 1994 a, b).
The simplified Young–Laplace equation again gives the oscillating tension from the
continuously measured gas pressure and radius.

In the drop weight method, pendant drops form and detach from a tube tip (see
the review by Miller et al. 1994). At the slow flow rates for which inertial and viscous
forces are negligible, a drop detaches quasi-statically when surface tension cannot
support its weight. Thus, the detached weight determines the tension at the moment
of detachment. As with the maximum bubble pressure method, varying the flow rate
accesses the tensions at different surface ages.

1.2. The central assumptions in the bubble or drop techniques

All of the above bubble or drop methods for the measurement of dynamic tension
make two central assumptions. First, as the bubble or drop expands or contracts,
the surface concentration remains uniform along the surface. Secondly, the surfactant
in the bulk liquid is convected only radially from the centre of the bubble or drop,
i.e. the tangential transport is negligible. All surfactant transport modelling begins
by assuming that the bubble or drop is a sphere (or a section of a sphere), with an
initial uniform concentration C0 in the liquid and either zero surface concentration
or a non-zero concentration Γ0 in equilibrium with C0. The models take the flow in
the liquid (either inside the drop or outside the bubble) as only normal to the surface
(ur = 1/4πr2). Here ur is the radial velocity (scaled by Q/a2) and r is the distance
(scaled by a) from the centre of the spherical bubble or drop. The convective and
diffusive transport of the bulk surfactant having concentration C(r, t) (scaled by C0)
is also radial:

∂C

∂t
+ ur

∂C

∂r
=

1

Pe
∇2
rC, (1.1)

where Pe is the Péclet number (=Q/aD, D being the bulk diffusivity), t is time (scaled
by a3/Q) and ∇2

r is the (non-dimensional) r component of the spherical Laplacian. The
surface concentration Γ (scaled by Γ0) is assumed to be uniform and is determined
by the overall surfactant mass balance:

dΓ

dt
+
Γ

A

dA

dt
=

1

Pe

aC0

Γ0

[
∂C

∂r

]
r=R

, (1.2)

where A is the bubble or drop area (non-dimensionalized by a2), and the right-hand
side of (1.2) is the diffusive flux at the surface. The boundary conditions for these
equations either equate the diffusive flux to the kinetic rate or require adsorption
equilibrium if the kinetics are fast, i.e. if the process is diffusion controlled (see,
for example, Nagarajan & Wasan 1993; Chang & Franses 1994 b). If the expansion
or contraction takes place in a short time, then diffusion changes only the bulk
concentration next to the bubble surface in a thin boundary layer of thickness
δ(t)� a. For this case the transport equation becomes

∂C

∂t
− n

A

dA

dt

∂C

∂n
=

1

Pe

∂2C

∂n2
, (1.3)

where n is the non-dimensional distance normal to the surface. Small penetration
depth solutions have been developed by Hirt et al. (1990), Macleod & Radke (1994),
and Joos & van Uffelen (1995), among others.
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The validity of the two assumptions has yet to be established. When a bubble or
drop expands or contracts from its initial equilibrium state, the surface surfactant
concentration changes by two mechanisms. First, the surface surfactant is convected
by a tangential flow induced by the motion of the bubble or drop. Wong et al. (1998)
numerically calculated the tangential flow induced by the expansion or contraction
of a clean bubble for 0.01 6 Ca 6 100 and without inertia (Re � 1, Ca Re � 1).
During contraction, for example, they found that the surface flow is from the bubble
apex towards the tube tip. Thus, during contraction, the convection mechanism will
carry the surfactant towards the tube tip, and increase the surfactant concentration
there. The second mechanism, however, tends to increase the surfactant concentration
at the bubble apex. This mechanism is the local area expansion or compression, which
changes the local surfactant concentration. This local area expansion or compression
is proportional to the normal velocity multiplied by the mean curvature. Because the
bubble is pinned at the tube tip, the normal velocity is zero there and is usually highest
at the bubble apex. Consequently, the local area change is zero at the rim and highest
near the apex. In contraction, for example, the compression of interface at the apex
is greater than that near the tube tip, and thus the surfactant concentration is higher
at the apex than at the tip. This gradient in surfactant concentration is opposite to
that created by the convection mechanism. Scaling arguments cannot decide which
mechanism will dominate because the two terms representing the two mechanisms
are both order one in the surfactant transport equation. Thus, a numerical solution
is necessary to reveal the dominant mechanism of surfactant transport.

In this paper, we study surfactant distribution and tangential velocity induced
by the Marangoni traction by numerically solving a model problem. We choose the
expansion and contraction of a pinned bubble in a liquid. The bubble initially is at rest,
with an adsorbed surfactant of uniform concentration Γ0 on its surface. We assume for
the purposes of illustration that the surfactant is insoluble. We first construct a formal
asymptotic expansion in the limit Ca → 0 with the Gibbs elasticity G 6= 0 (which
gives M →∞, where M = G/Ca is the Marangoni number), and obtain leading-order
solutions. We find that the solutions of bubble shape and surface velocities apply
not only to bubbles, but also to drops. The results show that the surface surfactant
concentration is uniform. This, therefore, confirms the validity of the first assumption
made in the bubble and drop techniques. To verify our asymptotic solution and its
conclusions, we calculate the surface concentration and velocities using a boundary
integral numerical scheme valid for Re � 1, Ca Re � 1, and arbitrary Ca and G.
We demonstrate that as Ca → 0 (or M → ∞) the surfactant distribution becomes
more uniform, and the tangential flow is enhanced. Thus, the second assumption in
the bubble and drop techniques is incorrect. The numerical results also show that the
local area compression or expansion is the dominant mechanism for determining the
surfactant concentration gradient.

The enhanced tangential flow shows that surfactants have very different effects
on the motions of a growing pinned bubble and a translating isolated bubble. A
detached bubble rising in a surfactant solution will see a tangential flow from the
nose to the back. This flow will sweep the adsorbed surface surfactant towards the
back to generate a gradient in surfactant concentration and, thus, in surface tension.
This creates an opposing Marangoni force, which eventually reduces the tangential
surface velocity to zero to yield no slip on the bubble surface (Sadhal & Johnson
1983). This zero velocity might have motivated the second assumption, in which the
tangential flow is neglected. However, a pinned bubble expanding or contracting in a
surfactant solution will see its tangential flow enhanced by the surfactant, owing to
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the non-uniform surface area expansion or compression. This conclusion holds in the
limit the Marangoni number M → ∞, which in general is associated with forming
a no-slip surface on an isolated translating bubble. Thus, ‘no-slip’ (M → ∞) on the
surface of a pinned, expanding or contracting bubble implies an enhanced tangential
flow, in contrast to the case of an isolated translating bubble.

We begin in § 2 by formulating the complete problem of bubble expansion or
contraction. In § 3, using this formulation, we derive the asymptotic equations for
the surface tangential velocity in the limit Ca → 0. Section 4 gives the details of the
boundary integral numerical method valid for arbitrary Ca and zero inertia. Results
of these boundary integral calculations and their comparisons with the asymptotic
results as Ca → 0 are in § 5. Extensions of the conclusions to bulk soluble surfactants
are discussed in § 6, and the paper concludes with a summary in § 7.

2. Mathematical model
Figure 1 shows the physical situation. A static, axisymmetric bubble sits at the tip

of a semi-infinite tube of radius a in an incompressible Newtonian liquid of viscosity
µ and density ρ. An insoluble surfactant is deposited onto the bubble surface, and
the bubble relaxes to an equilibrium shape with a uniform surfactant concentration
Γ0. At time t = 0, one either expands or contracts the bubble at a constant volume
flow rate Q. The liquid flow so generated obeys the equations:

Re Ca

[
∂u

∂t
+ u · ∇u

]
= ∇ · T = −∇p+ Ca∇2u− Bo ez, (2.1a)

∇ · u = 0, (2.1b)

where T is the stress, u is the velocity, p is the pressure relative to p(r → ∞, z = 0),
∇ is the gradient operator, and ez is an upward-pointing unit vector. A cylindrical
coordinate system (r, z) is set at the tube tip (figure 1). The capillary number
Ca ≡ µQ/a2σc and the Bond number Bo ≡ ρga2/σc measure, respectively, the relative
importance of viscous and gravity forces to capillary forces. In these dimensionless
numbers, σc is the surface tension for a clean interface, and g is the acceleration due to
gravity. In (2.1a) we have written the Weber number, the ratio of inertial to capillary
forces, as Re Ca , where Re is the Reynolds number (Re = ρQ/aµ). Throughout this
paper, the surface surfactant concentration is made dimensionless with Γ0, and all
other variables are non-dimensionalized using a, Q, and σc.

Equations (2.1a) and (2.1b) are subject to the following boundary conditions. We
prescribe the shape of the surface by r(s, t) and z(s, t), where s is the arc length
measured from the apex (see figure 1), and r and z are the cylindrical coordinates of
a point on the surface. At the bubble surface, the stress satisfies

T · n+ pgn = n(σ∇ · n− zBo)− s∂σ
∂s
. (2.1c)

Here, pg is the gas pressure relative to the liquid pressure p(r → ∞, z = 0), n and s
are the unit normal and tangential vectors defined in figure 1, σ is the dimensionless
surface tension, and ∇·n is the mean curvature. The gas is effectively inviscid, massless
and incompressible, so only its pressure appears in (2.1c). Equation (2.1c) states that
the jump in the normal stress is due to the capillary pressure and the difference in the
hydrostatic pressures, and that the shear stress exerted by the liquid is balanced by a
surface tension gradient. Further, at the bubble surface the fluid velocity satisfies the
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Figure 1. A sketch of an axisymmetric bubble pinned at the tip of a capillary with
unit radius and zero wall thickness.

constant flow rate condition: ∫∫
ΩB

u · n dS = ±1. (2.1d )

The surface integral is over the bubble surface ΩB . The positive sign holds for bubble
expansion, and the negative sign for bubble contraction. Equation (2.1d ) determines
the unknown gas pressure pg = pg(t) as shown in § 4.

On the tube surface, the fluid obeys the no-slip condition:

u = 0. (2.1e)

At infinity, the fluid is at rest,

u = 0, T = 0. (2.1f,g)

The surfactant concentration (Γ ) affects the surface tension, and they are related
here by the Volmer equation of state (Gaines 1966; Aveyard & Haydon 1973):

σ = 1− EkΓ

1− kΓ , E =
RuTΓ∞
σc

, k =
Γ0

Γ∞
, (2.2a–c)

where Ru is the universal gas constant, T is the absolute temperature, Γ∞ is the
surfactant surface concentration at closest packing, E is a dimensionless material
constant, and k is the initial concentration made dimensionless by the closest packing
concentration. The Volmer equation accounts for the finite size of the surfactant
molecules and imposes an upper bound on the surfactant concentration. The material
constant E is set to 0.3 throughout this work. Typically, Γ∞ ≈ 5 molecule/nm2 for
unbranched single hydrocarbon surfactants with hydroxyl or carboxylic polar groups
(Gaines 1966; Aveyard & Haydon 1973). Thus, if the liquid is water, σc = 72.5 mN/m,
then E = 0.3 at the room temperature of 300 K. To maintain positive σ for E = 0.3,
we need 0 6 kΓ < 0.77.

The Gibbs elasticity for an insoluble monolayer is −Γ∂σ/∂Γ . We use G to represent
the Gibbs elasticity at the initial surfactant concentration (Γ = 1). The Volmer
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equation of state then gives

G = −
(
∂σ

∂Γ

)
Γ=1

=
Ek

(1− k)2
. (2.2d )

This parameter reflects the variation of surface tension owing to a change in surfactant
concentration. Since E = 0.3, G = G(k) only.

With the equation of state (2.2 a) and the Gibbs elasticity (2.2d ), the tangential
stress balance becomes

Ca n · [∇u+ ∇ut] · s = G(k)

[
(1− k)2

(1− kΓ )2

]
∂Γ

∂s
. (2.3a)

The Marangoni number is M = G/Ca , which determines the type of boundary
conditions that the liquid flow must satisfy at the bubble surface. As M → 0, the
surfactant has no effect on the liquid flow and the zero-stress condition applies at the
interface. As M → ∞, (2.3a) gives ∂Γ/∂s → 0, which imposes the no-slip condition
on the bubble surface. For 0 6 M < ∞, the surfactant surface concentration is not
uniform; its distribution is governed by the conservation equation (Scriven 1960;
Waxman 1984; Slattery 1990; Wong et al. 1996)[

∂Γ

∂t

]
n

+ Γun∇ · n+ Γ∇s · us + us · ∇sΓ = 0, (2.3b)

where un is the normal component of the surface velocity, us = (u ·s) s is the tangential
fluid velocity, and the time derivative is taken along the direction normal to the
surface, i.e. keeping the ‘fixed’ surface coordinates constant (Wong et al. 1996). Since
us = 0 at the apex and the needle, ∂Γ/∂s being finite at those points is sufficient to
solve (2.3b). In (2.3b), surface diffusion of the insoluble surfactant has been neglected
because surface Péclet numbers are much larger than one. (Pes = Q/aDs, where Ds
is the surface diffusion coefficient. For a characteristic surface diffusion coefficient of
10−6 cm2/s (see Agrawal & Neuman 1988) and a tube radius of 1 mm, Pes = 104 for
Q as small as 1 mm3/s.)

Given an instantaneous bubble shape, (2.1)–(2.3) yield the liquid velocity and stress
fields, the gas pressure, and the surfactant concentration. The bubble surface advances
normally by the kinematic condition:

dX

dt
= (u · n) n, (2.4)

where X is the position of the bubble surface and d/dt is the derivative in the
Lagrangian frame. During bubble deformation, the bubble is pinned to the outer
edge of the tube. Thus, the contact angle is unspecified and is free to take any value
as determined by the solution of the problem.

3. Asymptotic solution in the limit Ca → 0

Since most of the experiments are carried out at Ca � 1, we seek an asymptotic
solution in the limit Ca → 0. The zero-order solution shows that at each instant in
time the deforming bubble takes the static shape. The surfactant distribution on the
bubble surface is uniform, but its value varies with time. Since the bubble shape is
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known, the free-boundary nature of this problem is eliminated in the limit Ca → 0.
The motion of the bubble can therefore be determined at any later time t, without
using the information of bubble evolution before t. This asymptotic solution holds
for Re = o(Ca−1) and G� Ca (or M →∞).

Consider a regular expansion of the governing equations (2.1)–(2.3) in Ca with k
or G(k) 6= 0, finite Re, and arbitrary Bo. The momentum equation (2.1a) gives, to
leading order, ∇p[0] = −Bo ez or

p[0] = −zBo. (3.1)

(Bracketed subscripts denote the order of the expansion in Ca .) Thus, the liquid
pressure to leading order is hydrostatic. On the bubble surface, the balance in the
normal (2.1c) and tangential (2.3a) stresses becomes

pg[0] = σ[0]∇ · n[0] − zBo, (3.2)

∂Γ[0]

∂s
= 0. (3.3)

Equation (3.3) specifies that, to leading order, the surface surfactant concentration is
uniform over the bubble surface. Thus, the surface tension is uniform, as governed by
the constitutive equation (2.2 a):

σ[0] = 1− G(k)
(1− k)2Γ[0]

1− kΓ[0]

. (3.4)

Equation (3.2) states that, to leading order, the bubble retains the static shape
with a uniform surface tension. As the bubble expands or contracts, the surfactant
concentration and therefore the surface tension varies with time because the surfactant
is insoluble and the total surfactant mass is conserved.

The rate of change of surfactant concentration is governed by the surfactant
transport equation (2.3b):

1

Γ[0]

dΓ[0]

dt
+ un[0]∇ · n[0] +

1

r[0]

∂

∂s
[r[0]us[0]] = 0. (3.5)

Here, the time derivative is ordinary because Γ is uniform. Let A[0] be the bubble
area to leading order. Multiplying (3.5) by 2πr[0], and integrating from s = 0 to sf[0]

with the conditions that us[0] = 0 at s = 0 (the bubble apex) and at s = sf[0] (the rim
of the tube) leads to the overall balance:

1

Γ[0]

dΓ[0]

dt
= − 2π

A[0]

∫ sf[0]

0

un[0]∇ · n[0]r[0] ds = − 1

A[0]

dA[0]

dt
. (3.6)

This can be rewritten as

d

dt
[A[0]Γ[0]] = 0 or A[0]Γ[0] = m, (3.7)

which says that the total surfactant mass is conserved. The dimensionless total mass
m is also the initial surface area because Γ[0] = 1 at t = 0.

Given, at t = 0, a static bubble coated with a prescribed amount of an insoluble
Volmer surfactant, we know Bo, m, k (and therefore G(k)), and the initial bubble
volume V0. Equation (3.4) then gives the initial surface tension and (3.2) yields the
initial gas pressure. The bubble volume either increases (expansion) or decreases
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(contraction) at a constant rate, according to (2.1d ):

dV[0]

dt
= 2π

∫ sf[0]

0

r[0]un[0] ds = ±1. (3.8)

Thus, at time t, the bubble volume is

V[0] = V0 ± t. (3.9)

At any given time or bubble volume, we calculate iteratively the bubble shape, A[0],
pg[0], σ[0] and Γ[0] using (3.2), (3.4), and (3.7) (see the Appendix for details). All these
variables depend on time only implicitly through V[0](t). The remaining variables to
be determined are dΓ[0]/dt, un[0], and us[0]. The first two are found by considering the
variation of bubble shape in time, subject to the constraints on dΓ[0]/dt in (3.6) and
on un[0] in (3.8), and by imposing the kinematic condition:

dX [0]

dt
= un[0]n[0]. (3.10)

Again, these variables depend on time only implicitly through the volume V[0](t). The
details are described in the Appendix.

With r[0], Γ[0], ∇ · n[0], dΓ[0]/dt, and un[0] known, the tangential surface velocity us[0]

is found from (3.5) together with the symmetry condition at the bubble apex:

us[0] = 0 at s = 0. (3.11)

A finite-difference scheme integrates the equation from s = 0 to the rim of the tube,
and yields us[0] as a function of arclength s. At the rim of the tube, the integration
gives us[0] ≈ 10−6 for all the cases calculated here. The fact that the integrated us[0]

is almost zero at the rim confirms the validity of not only us[0], but also the other
variables used in (3.5). The tangential surface velocity varies along the bubble surface
to maintain a uniform surfactant concentration and to impose the no-slip boundary
condition on the liquid flow. (Because the bubble deforms, no-slip does not imply
us[0] = 0, but rather it means that the surface points must shift tangentially to give
each surface element the same rate of expansion or contraction.)

The above calculations provide the leading-order bubble shape, gas and liquid
pressures, surface surfactant concentration and its rate of variation, and normal and
tangential velocities on the bubble surface as Ca → 0. These solutions are determined
independently of the bulk liquid flow and therefore they apply equally well to an
expanding or contracting drop coated with an insoluble monolayer. To calculate
the leading-order velocity in the continuous liquid phase, we consider the next order
expansion in Ca of (2.1a) which is in terms of the leading-order velocity and first-order
pressure:

Re

[
∂u[0]

∂t
+ u[0] · ∇u[0]

]
= −∇p[1] + ∇2u[0]. (3.12)

Equation (3.12) is subject to matching to the previously determined values of un[0]

and us[0] on the leading-order Young–Laplace shape. From (3.12) it is clear that even
though the tangential and normal velocities on the bubble surface already obtained
are valid for finite Reynolds number, the difficult task of obtaining the zero-order
flow field in the bulk for finite Reynolds number remains. Alternatively, if Re � 1,
then a boundary integral solution can provide the zero-order flow field in the bulk.
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4. Creeping flow boundary integral numerical solution

To compare our asymptotic solution to full numerically exact solutions, we solve the
low-Reynolds-number contraction of the bubble for arbitrary Ca . This limit neglects
the Re Ca term in (2.1a) to arrive at the Stokes equations. We follow the standard
procedures and use a boundary-integral formulation to solve the Stokes equations
and a finite-difference scheme to solve the surfactant transport equation (Stone &
Leal 1990; Milliken, Stone & Leal 1993; Milliken & Leal 1994).

The boundary integral equations that govern the fluid motion are (Pozrikidis 1992)

1
2
Ca uα(r̂, ẑ) + Ca

∫∫
ΩB

u · T̂ α · n dS −
∫∫

ΩT

ûα · T · n dS

=

∫∫
ΩB

ûα ·
[
n(σ∇ · n− zBo − pg)− s∂σ

∂s

]
dS (α = r, z), (4.1)

where ΩB and ΩT denote the bubble and tube surfaces. T̂ α and ûα are the stress
and velocity fields induced by a unit-strength ring force located at (r̂, ẑ) and acting
in direction eα, α = r, z. (They are listed in Appendix A of Wong et al. (1998).) At
each timestep the bubble shape and surfactant concentration are specified, so that the
right-hand side of (4.1) is known, except for the gas pressure. Thus, the unknowns
are the fluid velocity on the bubble surface u = urer + uzez , the stress on the tube
surface T · n = T · er = Trer +Tzez , and the gas pressure pg . Putting successively (r̂, ẑ)
on the bubble surface and on the tube surface yields two equations when α = r, and
another two equations when α = z. The gas pressure controls the bubble growth rate
and vice versa. Thus, pg is determined by the constant flow rate condition (2.1d ). We
have five equations for the five unknowns.

We solve the boundary integral equations using Nystrom’s method. Each integral
is expressed as a sum through the use of Gauss–Legendre quadrature. Putting the
source point on the quadrature points successively generates a system of algebraic
equations. These equations, together with the discretized constant flow rate condition,
are sufficient to determine all the unknowns. For most of the simulations in this
paper, 35 points are placed on the tube surface, and 32 on the bubble surface.
Convergence tests using more points indicate a relative error of at most 1 % for
these numbers of points. Details on the implementation of the Nystrom method are
given in Wong et al. (1998), which studies the expansion and contraction of a clean
bubble.

Given a bubble shape and a surfactant distribution at time t, the boundary integral
solution yields the normal and tangential velocity components on the bubble surface.
These are then substituted into the surfactant equation (2.3b), along with the mean
curvature (known from the shape) and a first-order finite-difference evaluation of
the surfactant gradient, to calculate [∂Γ/∂t]n at time t. Through a second-order
Runge–Kutta scheme, the bubble is then advanced at each point on the surface
by a distance un∆t normal to the surface, and Γ is found at the advanced surface
points from [∂Γ/∂t]n. For numerical stability, the maximum normal displacement
∆n is fixed at each timestep, and is found to depend on Ca . This determines the
timestep ∆t = ∆n/umaxn , where umaxn is the maximum normal velocity at the bubble
surface at time t. For the smallest value of Ca calculated (Ca = 0.02), ∆n = 5 ×
10−5, and for the largest value (Ca = 0.5), ∆n = 2.5 × 10−3. With the bubble
shape and surfactant distribution known at time t + ∆t, the solution procedure is
repeated.
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Figure 2. Contraction of a bubble from V = 30 to 20. Bo = 0.1, Ca = 0.1, k = 0.2.
Thus, G = 0.09375 and M = 0.9375.

5. Results
The Marangoni number M = G/Ca determines the boundary condition at the

bubble surface, as shown by the tangential stress balance (2.3a). For M → 0 (G→ 0,
Ca finite), such as the case for a clean bubble, the fluid satisfies zero stress at the
bubble surface. For M → ∞ (Ca → 0, G finite), (2.3a) gives ∂Γ/∂s = 0, and the
surfactant transport equation specifies the tangential velocity on the bubble surface
(§ 3). The purpose of this section is to illustrate the transition between the two limits.
The boundary integral results at high M agree with the asymptotic solution in § 3.
The agreement confirms both solutions.

This section studies bubble contraction from bubble volume V = 30 to 20 at
Bo = 0.1 to illustrate the transition. The behaviour of this contracting bubble is
controlled by two parameters: Ca and k. Once a value is assigned to these parameters,
we can calculate G = G(k) from (2.2d ) and M = G/Ca . Results for a specific set of
parameters (Ca = 0.1, k = 0.2) are presented first to illustrate the general features.
The bubble shapes during contraction are shown in figure 2. A contracting bubble
satisfies dV/dt = −1, so V = 30− t and the bubble takes 10 units of time to shrink
to V = 20. The clean bubble calculations of Wong et al. (1998) demonstrate that for
Ca 6 0.1 viscous stresses do not distort the bubble shape from the Young–Laplace
solution during expansion or contraction, except near the beginning for t ∼ Ca (see
below). Likewise, the contracting shapes in figure 2 deviate only slightly from Young–
Laplace solutions with identical volumes and a uniform surface tension corresponding
to the mean tension at that bubble area. As shown below, the surface concentration
is not uniform. The congruence to uniform tension Young–Laplace shapes indicates
that the surface tension inhomogeneity does not have a noticeable effect on the shape
for the chosen set of parameters.

For Ca � 1, capillarity dominates throughout bubble contraction, except near
t = 0 where viscous forces dominate. At t < 0, the capillary pressure balances exactly
the pressure difference across the static bubble surface. At t = 0, the gas pressure is
decreased instantaneously by ∆p to effect bubble contraction at a unit flow rate. At
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that instant, the bubble shape remains the same, so that the capillary pressure is the
same and still exactly balances the initial gas pressure. Therefore, the pressure drop
∆p can only be balanced by the viscous normal stress. Thus, the motion at t = 0
corresponds to a bubble with zero surface tension even in the limit Ca → 0. This
singular region is typical of start-up problems and exists for t ∼ Ca (Wong et al. 1998).

This singular region is reflected in the normal and tangential surface velocities
plotted in figures 3 (a) and 3 (b). The normal velocity un at t = 0 shows a different
trend from the velocity profiles at later times owing to the start-up singularity. For
t > 1, the singularity has ended, and un is essentially determined at this small Ca (0.1)
by the kinematic constraint of contraction of the Young–Laplace pendant shape. As
such, |un| is always highest at the apex and decreases to zero at the base (z = 0),
although not always monotonically. For example, un > 0 near the base, i.e. moving
outward, despite the fact that the bubble is contracting. This is because the static
bubble shape changes from pendant to spherical as a bubble shrinks and gravity
becomes less important; the interface near the base must move outward to achieve
this shape change. Finally, at times later than shown, un becomes linear in z as the
bubble becomes more spherical (Wong et al. 1998).

The tangential velocity us (figure 3 (b)) shows a ten-fold increase in magnitude
during this contraction. At t = 0, the start-up singularity gives a us as if the bubble
has zero surface tension. At t = 1, the start-up singularity has dissipated, but the
surfactant distribution is not perturbed sufficiently to generate a significant concen-
tration gradient (see figure 4). Therefore, us at t = 1 can be taken as the tangential
velocity for a clean bubble. From t = 1 to 10, us increases by roughly 2.5 times.
However, us for a clean bubble remains at the same level at t = 10 as at t = 1, as
shown later in figure 9 (b) (note the magnitude at t = 10 for the case k = 0). Thus,
the large increase in us from t = 1 to 10 is due to the presence of surfactant.

This large increase in us is investigated. The tangential velocity is positive, which
means that the surface flow is from the bubble apex towards the base (figure 3 (b)).
Intuitively, one would predict that the surfactant will therefore be convected towards
the base and accumulated there. However, a plot of the surfactant concentration
in figure 4 shows that the concentration is actually higher at the apex. A careful
comparison of the terms in the conservation equation (2.3b) reveals that the local
area compression term un∇·n always dominates the convective terms Γ∇s ·us+us ·∇sΓ .
Since un is always highest at the apex, the surface compression is highest there. The
high compression increases the surfactant concentration, and the convection towards
the base is not fast enough to remove this excess. As a result, Γ is higher at the apex,
and the surface tension σ is lower there (σ is related to Γ by (2.2 a)). The Marangoni
force acts to pull surface fluid from the apex towards the base, and enhances the
tangential flow. This explains the increase in tangential flow when a surfactant is
present.

The surfactant concentrations in figure 4 also exhibit an overall increase in magni-
tude with time. This is due to the contraction of the total bubble area. As shown in
figure 5, the area shrinks by roughly 20 % in 10 time units. Also plotted in figure 5
is the gas pressure, which increases with time because the capillary pressure increases
as the bubble shrinks from V = 30 to 20.

The Marangoni number determines the boundary condition at the bubble surface
and affects the flow behaviour. Its effect is studied by conducting two series of
numerical simulations of contracting a bubble from V = 30 to 20 at Bo = 0.1. In the
first, k is fixed at 0.2, and Ca is decreased from 0.5 to 0.02. The Marangoni number
M therefore varies from 0.2 to 5, and the results are presented in figures 6, 7 and
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Figure 3. The (a) normal and (b) tangential surface velocities versus the vertical distance z at
different times. Bo = 0.1, Ca = 0.1, k = 0.2. Thus, G = 0.09375 and M = 0.9375.
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Figure 4. Surfactant concentration versus the vertical distance z at different times.
Bo = 0.1, Ca = 0.1, k = 0.2. Thus, G = 0.09375 and M = 0.9375.

8. Figure 6 shows the gas pressure pg versus time for different Ca . For each Ca , pg
increases with time owing to the increase in capillary pressure as the bubble shrinks
from V = 30 to 20. The overall level of pg increases as Ca decreases because a
higher gas pressure is needed to balance the capillary pressure as the viscous normal
stress drops. As Ca decreases, pg approaches the asymptotic solution pg[0] for Ca = 0
described in § 3. The agreement between the numerical and asymptotic solutions
serves as a mutual check for both solutions.

The normal and tangential surface velocities at t = 10 or V = 20 are presented in
figure 7 for different Ca . It shows that the normal velocity is insensitive to Ca for



292 H. Wong, D. Rumschitzki and C. Maldarelli

0.85

0.65
0 2 6 8 10

t

pg

0.80

0.75

0.70

4

45

40

35

30

A

Figure 5. The gas pressure and bubble area versus time. Bo = 0.1, Ca = 0.1, k = 0.2.
Thus, G = 0.09375 and M = 0.9375.
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Figure 6. The gas pressure versus time for different Ca or M (= G/Ca). Bo = 0.1, k = 0.2 and
thus G = 0.09375.

Ca < 0.2; the velocity profile for Ca = 0.02 already coincides with the asymptotic
solution for Ca = 0. As explained in the asymptotic theory (§ 3), un is determined from
the kinematic condition, which depends mainly on the bubble shape. For Ca 6 0.1,
the bubble takes nearly Young–Laplace shapes for Ca = 0 (Wong et al. 1998). Thus,
un is insensitive to Ca .

Figure 7 (b) shows that the tangential velocity us varies non-monotonically with
Ca . As Ca decreases, the maximum value of us increases and reaches a maximum
around Ca = 0.1 (M ≈ 1), before decreasing slightly to the asymptotic solution. The
agreement with the asymptotic solution is again noteworthy because the two solutions
are obtained by two very different avenues; the boundary integral method determines
the tangential velocity from the fluid flow, whereas the asymptotic solution calculates
it directly from the surfactant transport equation.

The surfactant concentration Γ at V = 20 is plotted in figure 8 for several Ca
ranging from 0.02 to 0.5. It shows that as Ca decreases, Γ becomes more uniform,
because the viscous shear stress is weaker and can only sustain a smaller surface
tension gradient. The dashed curve in figure 8 is the uniform asymptotic solution for
Ca = 0 determined from the global mass conservation (3.7). The boundary integral
solutions merge towards this uniform asymptotic value as Ca decreases. As described
in § 2, the boundary integral solutions are determined without imposing the global
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Figure 7. The (a) normal and (b) tangential surface velocities versus the vertical distance z for
different Ca or M (= G/Ca) at t = 10 or V = 20. Bo = 0.1, k = 0.2 and thus G = 0.09375.
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Figure 8. Surfactant concentration versus the vertical distance z for different Ca or M (= G/Ca)
at t = 10 or V = 20. Bo = 0.1, k = 0.2 and thus G = 0.09375.

conservation of surfactant mass, and mass leakage is possible owing to discretization
errors. This accounts for the difference shown in figure 8 between the level of
concentration at Ca = 0.02 and the asymptotic curve. Mass leakage ranges from 0.8 %
for Ca = 0.5 to 1.5 % for Ca = 0.02. This leakage decreases as a finer grid size is used.

In the second series of numerical simulation, the bubble is again contracted from
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or V = 20 for k = 0, 0.01, 0.05 and 0.2. The corresponding values of G(k) are 0, 0.003, 0.017, and
0.09375. Bo = 0.1, Ca = 0.1.

V = 30 to 20 at Bo = 0.1. Results at V = 20 are presented in figures 9 and 10 for
Ca = 0.1, and k = 0 to 0.2. According to the definition of k in (2.2 c), increasing k
means adding more surfactant to the bubble surface. In figure 9, un and us are plotted
against the vertical position for various k. The data show that k has surprisingly little
effect on un. At Ca = 0.1, the bubble shapes are essentially Young–Laplace (Wong
et al. 1998). Since un derives from the shape, the normal velocity is not affected. The
tangential velocity us, however, increases by almost 2.5 fold as k increases from 0 to
0.2 or equivalently as M increases from 0 to 0.9375. This again confirms that the
Marangoni force significantly enhances the tangential flow. The value M = 0.9375 is
sufficient to reveal the full effect of the Marangoni force, since the magnitude of us
at M = 0.9375 is about the same as the asymptotic solution for M → ∞ depicted in
figure 7 (b).

As k increases, more surfactant is added, so that the surface tension drops and
a gradient in surface tension is possible, as shown in figure 10 (a). This gradient is
responsible for enhancing the tangential flow. Figure 10 (b) presents the surfactant
concentration Γ as a function of the vertical position for various k. As k increases,
Γ becomes more uniform because of the higher tangential flow that redistributes
the surfactant from the bubble apex to the base. The surface tension becomes less
uniform as Γ becomes more uniform because the elasticity of the surfactant increases.
(As k increases from 0 to 0.2, the elasticity number G defined in (2.2d ) varies from 0
to 0.09375.) Note that at k = 0, G = 0, so the surfactant does not affect the surface
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Figure 10. (a) Surface tension and (b) surfactant concentration versus the vertical distance at t = 10
for k = 0, 0.01, 0.05 and 0.2. The corresponding values of G(k) are 0, 0.003, 0.017 and 0.09375.
Bo = 0.1, Ca = 0.1.

tension; the surfactant is simply being compressed and convected along the surface.
The surface velocities for k = 0 are therefore the same as for a clean interface, and
the distribution holds for a passively adsorbed species. Note that because Γ is made
dimensionless by Γ0, k = 0 is only meant in the limiting sense.

Throughout this paper, results of un, us, σ and Γ are plotted against the vertical
distance z instead of the arclength s because it is easier to see the relative position
on the bubble. At the bubble apex s = 0, un, σ and Γ have finite slopes when plotted
against z, and thus will satisfy ∂/∂s = 0 because ∂/∂s = (∂z/∂s)∂/∂z and ∂z/∂s = 0 at
s = 0. Only us exhibits unbounded slopes at s = 0. In this case, it can be shown using
the surfactant mass balance (2.3b) that as s → 0, ∂us/∂s→ −(Γ−1∂Γ/∂t+ 1

2
un∇ · n),

i.e. the slope ∂us/∂s approaches a constant near the apex. Values of this slope are
listed in Table 1 for all the cases studied in figures 3 (b), 7 (b) and 9 (b).

6. Extension to bulk soluble surfactants
Our conclusions of uniform concentration and large tangential velocity during

bubble expansion or contraction have been obtained assuming that the surfactant is
insoluble. An important issue is how surfactant exchange between the surface and
the liquid affects these conclusions, since most applications of the bubble expansion
or contraction methods aim to measure kinetic and diffusive transport coefficients.
To discuss this influence, we assume that the concentration of the bulk soluble
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Ca k t
∂us

∂s

0.1 0.2 1 0.01457
0.1 0.2 2 0.02271
0.1 0.2 4 0.03166
0.1 0.2 6 0.03623
0.1 0.2 8 0.03890
0.1 0.2 10 0.04087
0* 0.2 10 0.03658
0.02 0.2 10 0.03819
0.5 0.2 10 0.03352
0.1 0 10 0.01795
0.1 0.01 10 0.02193
0.1 0.05 10 0.03184

* From the asymptotic solution.

Table 1. Tangential velocity gradient at the bubble apex s = 0. Bo = 0.1.

surfactant far from the bubble surface is equal to C0. In the absence of interactions
among adsorbed molecules, kinetic exchange of a bulk soluble surfactant between
the air/water surface and the aqueous sublayer immediately adjoining the interface
obeys a Langmuir relation (Baret 1969; Borwankar & Wasan 1983):

q

αΓ0

=

[
βC0

α

(
1

k
− Γ

)
Cs − Γ

]
, (6.1)

where q is the dimensional kinetic flux, Cs is the concentration (non-dimensionalized
by C0) in the liquid sublayer adjacent to the bubble, α and β are, respectively, the
kinetic rate constants for desorption and adsorption, Γ0 is the surface concentration
in equilibrium with C0, Γ is the non-dimensional surface concentration (non-dimen-
sionalized by Γ0), and k = Γ0/Γ∞ is the ratio of the equilibrium adsorption to the
maximum packing concentration (Γ∞). At equilibrium, Γ = 1, Cs = 1, and q = 0.
Thus, (6.1) gives k = (1 + α/βC0)

−1. This and the Gibbs–Duhem equation derive the
equation of state for the surface tension σ (made dimensionless by the clean tension):

σ = 1− Gs(k)(1− k)
k

ln(1− kΓ ), (6.2)

where Gs(k) = Ek/(1− k) is the Gibbs elasticity of the soluble surfactant evaluated at
the equilibrium coverage, and E is as before. The tangential stress balance becomes

Ca n · [∇u+ ∇ut] · s = Gs(k)
1− k

1− kΓ
∂Γ

∂s
. (6.3)

The Marangoni number for the soluble surfactant problem is Ms = Gs/Ca . To
complete the formulation of this problem, the kinetic rate q contributes an additional
term to the left-hand side of the surface conservation equation (2.3b), and this rate is
also equated to the diffusive flux to the surface to provide a boundary condition at
the bubble surface for the unsteady convective diffusion equation.

Consider the case of contraction. For any non-zero value of Ms, the gradient in
surface concentration created by the non-uniformity in the local area compression is
reduced by kinetic and diffusive transport into the bulk. Thus, the Marangoni force
is reduced and so is the tangential surface velocity. We expect, therefore, that as the
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surface contracts, the tangential velocity will be smaller for a soluble surfactant than
for an insoluble one with comparable Marangoni numbers.

In the limit Ca → 0 or Ms → ∞, (6.3) also requires the leading-order surface
concentration to be uniform. Thus, the uniformity of the surface concentration in
this limit is unaffected by the surfactant solubility. However, for the soluble case,
the total amount of surfactant on the bubble surface changes as the area changes.
The tangential surface velocity needed to maintain the surface concentration uniform
is governed by the conservation equation, and we examine its form below, first for
kinetic and then for diffusion-limited mass transfer.

For kinetically controlled transport, diffusion between the sublayer and the bulk is
much faster than the kinetic transport between the sublayer and the surface. Thus, the
sublayer concentration is always equal to the far field equilibrium value (i.e. Cs = 1),
and (6.1) gives the dimensionless kinetic flux as (1 − Γ )/(1 − k). The augmented
conservation equation becomes

dΓ

dt
+ Γun∇ · n+

Γ

r

∂

∂s
(usr) +

Bi

1− k (Γ − 1) = 0, (6.4)

where Γ is the non-dimensional uniform surface concentration, and the Biot number
Bi = αa3/Q measures the ratio of the kinetic rate for desorption (αΓ0) to the rate
of change of surface concentration owing to the change in area (Γ0Q/a

3). Note that
as in the case of the insoluble surfactant, (6.4) combined with the efficient method
described in § 3 can easily be solved to obtain the tangential surface velocity without
recourse to the equations of motion. As such, its range of validity is equally broad.

If Bi � 1, then a regime arises in which the large kinetic exchange and the large
elasticity compete with one another to determine the surface tangential velocity. If we
reconsider our asymptotic expansion in Ca → 0 in § 3 and assume Bi = λCa−1, where
λ is a constant independent of Ca , then (6.4) to leading order in Ca yields Γ[0] = 1,
i.e. the surface concentration takes the equilibrium value and is independent of time.
Thus, the calculations of the bubble shape and normal surface velocity are simplified
because the surface tension is uniform and independent of time. The (leading-order)
tangential surface velocity follows from the first-order equation for the tangential
stress and the mass conservation:

n[0] · [∇u[0] + ∇ut[0]

] · s[0] = G(k)
∂Γ[1]

∂s
, (6.5)

un[0]∇ · n[0] +
1

r[0]

∂

∂s
(us[0]r[0]) +

λ

1− kΓ[1] = 0. (6.6)

Because the tangential stress appears in the equations, these calculations, unlike
the order Ca0, are not divorced from the equations of motion in the liquid. These
equations, however, do describe a return to the stress-free condition when the kinetic
exchange dominates over the large elasticity effect of increasing the surface tangential
velocity. In this latter limit, Bi ∼ Ca−2 or λ → ∞, so that (6.6) gives Γ[1] → 0.
Equation (6.5) then requires the interface to become stress-free, and thus the surface
velocities are the reduced ones for the stress-free condition (as given most closely
by Ca = 0.5 in figure 7 (b) where the capillary number is sufficiently large so as to
minimize the effect of the Marangoni traction).

If bulk diffusion is rate limiting, then local equilibrium prevails between the sur-
factant on the surface and in the sublayer, and (6.1) with q = 0 gives

Γ =
Cs

1− k + kCs
. (6.7)
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Note that in the limit Ms →∞, this equilibrium condition dictates that Cs[0] is uniform
along the bubble surface because the surface concentration Γ[0] is uniform in this
limit. The leading-order surface mass balance becomes the boundary condition at the
interface for the bulk diffusion equation. To leading order, the mass balance is

dΓ[0]

dt
+ Γ[0]un[0]∇ · n[0] +

Γ[0]

r[0]

∂

∂s
(us[0]r[0]) +

aC0

Γ0Pe
n[0] · ∇C[0] = 0, (6.8)

where Pe (= Q/aD) is the bulk Péclet number. The coefficient aC0/Γ0 Pe is the ratio of
the rate of accumulation (DC0/a) of surfactant on the surface owing to diffusion to the
rate of change (Γ0Q/a

3) of the surface concentration owing to the area change. Once
again, if aC0/Γ0 Pe ∼ Ca−1, then Γ[0] = 1 and Cs[0] = 1, and the elasticity and the

diffusive exchange compete to determine the surface velocity. If aC0/Γ0 Pe ∼ Ca−2,
then the surface again becomes tangentially stress free.

In dynamic tension experiments, if either Bi� 1 or aC0/Γ0 Pe � 1, then the surface
concentration and dynamic tension remain to leading order at their equilibrium
values. Such experiments are not useful, since they yield no insight into the surfactant
transport. To obtain such information, ideal dynamic tension experiments require
Bi� 1 or aC0/Γ0 Pe 6 1. Thus, the surface concentration of surfactant must change
appreciably upon contraction or expansion, and can be accurately measured via the
significant changes in dynamic tension. In these regimes, the exchange does not bring
the surface back to a stress-free condition, and the surface convection, although not
as large as in the insoluble limit, is nonetheless enhanced from the stress-free (clean
interface) case.

Although us ∼ un, the small penetration depth solutions described in § 1 still hold
for time � a2/D when the diffusion boundary layer is thin compared with the tube
radius. In this regime, tangential convection is small compared to normal convection,
even when the normal and tangential velocities are of the same order because the
gradient in surfactant concentration is much smaller in the tangential direction than
in the normal direction; use of (1.3) is then valid (Macleod & Radke 1994).

7. Summary
This work studies the contraction or expansion of a bubble from the tip of a

tube with an insoluble monolayer adsorbed on its surface. This is a model problem
for understanding the hydrodynamics and surfactant distribution in dynamic tension
measurement techniques, such as the maximum bubble pressure, drop weight, growing
drop, pulsating bubble, and pendant bubble and drop shape analysis methods. We
develop asymptotic solutions in the limit Ca → 0 that hold for Re = o(Ca−1), non-zero
Gibbs elasticity (G), and arbitrary Bond number. This limit is typical of the air/water
interface, which is the interface of greatest interest. We establish two important
conclusions from the asymptotic solution. (i) Although the larger area shrinkage at the
apex during contraction tends to increase the surface concentration there relative to
the rim, the large Marangoni force drives a substantial Marangoni convection which
reduces this developing gradient and maintains a uniform concentration. (ii) The
resulting tangential velocity is higher than that of the clean-bubble case. In addition,
we obtain solutions for the surface velocities and surfactant concentration without
solution of the bulk flow field. As such, these solutions are valid for hanging drops
as well as bubbles formed in a liquid. Full numerical boundary integral solutions for
Re � 1 and arbitrary Ca and G match the asymptotic results as Ca → 0 with G fixed.

The conclusion that the surfactant distribution (and therefore the tension) is
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uniform verifies the assumption used in the dynamic surface-tension measurement
methods. However, the enhancement of tangential surface convection suggests the
need for the refinement of models of surfactant transport, which at the present time
include only radial convection and diffusion of surfactant in the bulk liquid.

Appendix. The zero-order solution
Let (r[0](s; t), y[0](s; t)) be the coordinates of the bubble surface to leading order

in Ca , with y starting from the bubble apex and pointing downward, i.e. y[0](s; t) =
h[0](t) − z[0](s; t), where h[0] is the leading-order bubble height (see figure 1). In
these coordinates, the Young–Laplace equation (3.2), which governs the leading-order
shape, becomes

∇ · n[0] =
∂φ[0]

∂s
+

sinφ[0]

r[0]

=
2

R[0]

− Bo

σ[0]

y[0], (A 1)

∂r[0]

∂s
= cosφ[0], (A 2)

∂y[0]

∂s
= sinφ[0], (A 3)

pg[0] =
2σ[0]

R[0]

− h[0]Bo, (A 4)

where R[0] is the radius of curvature at the apex, and φ[0] is the angle between the
normal and the z-axis (figure 1). The surface tension σ[0] is uniform and is related to
the surfactant concentration by the constitutive equation (3.4):

σ[0] = 1− G(k)
(1− k)2Γ[0]

1− kΓ[0]

. (A 5)

The surfactant concentration varies with time to conserve the total surfactant mass:

Γ[0]A[0] = m, (A 6)

A[0] = 2π

∫ sf[0]

0

r[0] ds. (A 7)

At t = 0, we are given a value for Bo, k (and therefore G(k)), and the bubble
shape. From the shape, we can determine R[0](0), V[0](0) = V0, and A[0](0) = m (since
Γ[0](0) = 1).

Because the bubble shape is known in the limit Ca → 0, the free-boundary nature
of the problem is eliminated and the solution can be determined at any time without
knowing the history of the evolution. To find the solution at a later time, we first
pick a value for R[0], and solve (A 1)–(A 7) by an iterative method. Starting with
Γ[0] = 1, we get an initial guess for σ[0] from (A 5), and integrate (A 1)–(A 3) by a
fourth-order Runge–Kutta method with the following starting conditions at s = 0:
φ[0] = 0, r[0] = 0, and y[0] = 0. The integration is stopped when the radius reaches the
tube tip, i.e. when r[0] = 1. This determines the total arclength sf[0]. The bubble area
A[0] is then calculated from (A 7), and is substituted into (A 6) to yield a new Γ[0]. A
new surface tension is again calculated for this new value of Γ[0], and a new bubble
shape solved, and so on. The solution converges quadratically to an accuracy of 6
significant figures in 4–5 iterations. The converged solution is used to calculate the
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volume V[0], which is related to the non-dimensional time by (3.9):

V[0] = V0 ± t. (A 8)

If the volume or time is not the desired one, a new value of R[0] is chosen, and the
above procedures are repeated until the right volume or time is obtained. Thus, given
a volume or time, we can determine R[0], Γ[0], σ[0], A[0], and the bubble shape. From
the shape, we get h[0] = y[0](sf[0]), which gives pg[0] from (A 4).

The normal surface velocity is given by the kinematic condition (3.10) as un[0] =
n[0] · (dX [0]/dt) or

un[0] =
∂r[0]

∂t
sinφ[0] +

(
dh[0]

dt
− ∂y[0]

∂t

)
cosφ[0]. (A 9)

This is the normal velocity relative to the tube tip. The unknown dh[0]/dt is found
indirectly by first solving for the normal velocity relative to the bubble apex:

U(s) =
∂r[0]

∂t
sinφ[0] − ∂y[0]

∂t
cosφ[0]. (A 10)

Then, the pinning condition un[0] = 0 at s = sf[0] gives dh[0]/dt in terms of U(sf[0]),
and we recover

un[0] = U(s)−
[

U(sf[0])

cosφ[0](sf[0])

]
cosφ[0]. (A 11)

To obtain the derivatives of the surface coordinates in (A 10), we differentiate
(A 1)–(A 3) with respect to time at constant s:

∂

∂s

(
∂φ[0]

∂t

)
=

sinφ[0]

r2
[0]

∂r[0]

∂t
− Bo

σ[0]

∂y[0]

∂t
− cosφ[0]

r[0]

∂φ[0]

∂t

− 2

R2
[0]

dR[0]

dt
+
y[0]Bo

σ2
[0]

dσ

dΓ

dΓ[0]

dt
, (A 12)

∂

∂s

(
∂r[0]

∂t

)
= − sinφ[0]

∂φ[0]

∂t
, (A 13)

∂

∂s

(
∂y[0]

∂t

)
= cosφ[0]

∂φ[0]

∂t
, (A 14)

With R[0], Γ[0], and the bubble shape already known from (A 1)–(A 8), there remain
three unknown variables: ∂r[0]/∂t, ∂y[0]/∂t, and ∂φ[0]/∂t. The parameters dR[0]/∂t and
dΓ[0]/dt are also unspecified. Thus, two more equations are required to close the
system. These are the constant flow rate condition and the integral surfactant mass
balance:

2π

∫ sf[0]

0

un[0]r[0] ds = ±1, (A 15)

dΓ[0]

dt
+

2πΓ[0]

A[0]

∫ sf[0]

0

un[0]∇ · n[0]r[0] ds = 0. (A 16)

We solve by first dividing (A 10)–(A 16) by dR[0]/dt, and seek solutions of the ratio
of the unknowns to dR[0]/dt. This is again done iteratively. Assume a value of
(dΓ[0]/dt)/(dR[0]/dt), and integrate (A 12)–(A 14) by a fourth-order Runga–Kutta
method with the following starting conditions at s = 0: ∂r[0]/∂t = 0, ∂y[0]/∂t = 0, and
∂φ[0]/∂t = 0. Substitution of the solution into (A 16) with un[0]/(dR[0]/dt) from (A 11)
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gives a new value for (dΓ[0]/dt)/(dR[0]/dt). This iteration procedure again converges
quadratically. After convergence, (dr[0]/dt)/(dR[0]/dt) and (dy[0]/dt)/(dR[0]/dt) are
substituted into (A 15) to yield dR[0]/dt. This completes the solution, and again
dR[0]/dt and dΓ[0]/dt vary with time implicity through R[0] (or equivalently V[0]).
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